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Abstract
We positively answer Question A.1.6 of Klop’s Ustica notes [3] p.81]:

Is there a recursive normalizing one-step reduction strategy for
micro A-calculus?

where micro A-calculus refers to an implementation of the A-calculus due
to Révész [4], implementing (-reduction by means of ‘micro steps’ recur-
sively distributing a B-redex (Az.M)N over its body M.

1 Answer

Definition 1. Distributive reductiora — on A-terms is generated by:

(A.x)N — N
(Az.y)N — y forz#y
Ay M)N — My.(Ae.M)N forx#vy andy & N

Remark that a term is a distributive redex if and only if it is S-redex, hence
distributive and #-normal forms coincide.

Normalisation of our strategy answering the question in the abstract, relies
on the one hand on normalisation of spine reductions for the ordinary A-calculus,
and on the other hand on termination of pure distribution steps, as encountered
in the A-calculus with explicit substitutions Ax.

Definition 2. An inner spine strateqy always contracts an innermost redex
amonyg the spine redexes [, Definition 4.7(i)].

By the above remark, the spine redexes w.r.t. distributive reduction coincide
with those for ordinary (-reduction.

If M distributively rewrites to M’, then in general M need not (-rewrite to
M’, but M and M’ are (B-convertible:

IDistributive reduction is our attempt to provide ‘micro A-calculus’ with a more systematic
name.



At.x)N —g z[z:=N] = N;

(.

(Az.y)N —pg ylz:=N] =y;

(Azy.M)N —g (Ay.M)[z:=N] = A\y.M[z:=N] —3 Ay.(Az.M)N;
(

Ar.MiMo)N —g (M Ms)[z:=N] = My[z:=N|Ms[z:=N] —3

Our strategy relies on the observation that distributive reduction s preserved
when projecting every term M to its full-3-development M*®, as long as the
steps of the former are not (-destructive. Here the full-3-development M® of
a term M is the term obtained by (-contracting all redexes of M, and a step
is called destructive, if the redex contracted is of shape (Az.(Ay.M;)M2)N, i.e.
in case of distribution of N over an application (Ay.M;)Ms) which itself is a
redex. Non-destructive steps will be mapped to (-reduction sequences by e.

Instead of proving this general fact, we note inner spine steps are non-
destructive by innerness, and show that each such inner spine step is mapped
to at most a single B-reduction step by e. Moreover, in case a distributive in-
ner spine step is mapped to the empty step by e, i.e. if it is erased, then that
step did not create a redex, hence it was a purely distributive step. This can
be expressed formally by mapping the step to an z-step in Bloo and Rose’s
A-calculus with explicit substitutions Az [2], via an explicification map ¢. Here,
the explicification M* of a term M is obtained by replacing each redex (Ay.P)Q
by the redex P(y:=Q) in the A-calculus with explicit substitutions Ax.

Lemma 3. If M — N is an inner spine step, then M*® —z N°® by a spine step,
or M®* = N*® and M°® —, N°.

Proof. See Appendix [A] O
Theorem 4. Inner spine strategies are normalising.

Proof. By the lemma, an infinite distributive reduction from some term M
having a normal form M, would give rise to an infinite spine S-reduction from
M?®, unless from some moment N on in the distributive reduction all further
terms are mapped to N°®. But then by the lemma again, the infinite distributive
reduction from N would give rise to an infinite z-reduction from N°.

Infinite spine (-reductions are impossible from M® since M and M® are
(B-convertible, hence have the same (3-normal form M , and spine strategies are
needed strategies, hence normalising [I].

Infinite —,-reductions are impossible since —, reduction (the substitution
rules) is known to be terminating for the Az-calculus [2]. O

The strategy can be made effective by first searching for the leftmost path
containing a redex, and then taking the innermost redex on that path.

The essence of our strategy is to avoid destruction of redexes. In particu-
lar, the inner spine strategy avoids (by innerness) that distribution of the outer
redex in @ = (A\x.(A\y.M)N)P destroys the inner one, thereby blocking Klop’s



counterexample to preservation of strong normalisation for distributive reduc-
tion. In a way, this demonstrates that Klop’s spiralling reduction from @ is the
only extra ‘cause’ for non-termination in the implementation of -reduction by
means of distributive reduction. We expect it to be be easy to adapt our proof
to other strategies breaking the spiral.
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A Proof of Lemma [3

We provide a detailed proof of Lemma [3] stating that if M — N is an inner
spine step, then M*® —8 N*® by a spine step, or M®* = N® and M® —, N°.

Proof. By induction on the generation of steps.

e If the step is due to an instance ¢ — r of one of the distributive rule
schemata, then ¢® = r*:

— (Ax.x)N)® = z[z:=N°*] = N*;
— ((Az.y)N)* =y[z:=N°*] =y = y*;
— (g M)N)® = Qg M*)r=N*) =

Ay Mz =N*] = Ay.(Az.M)N)* = (\y.(\a. M)N))*;

— ((Az. My M2)N)® = (M1 Ms)®[x:=N°] = (M M3)[z:=N°*] =
MPz:=N*|M3[x:=N°*] = (Ax.M71)N)*((Az.M3)N)® =
((Ax.M71)N((Ax.M2)N))®, which holds by the step being inner spine,
guaranteeing that the application M; M is not a redex, hence that
(M1 M3)® = M?M;.

We show £° —, r° holds in each case:
— ((Az.2)N)® = z(x:=N°) —, N°;
— (Azy)N)® = y(o:=N°) =5 y =y



— (Azy.M)N)° = (A\y.M°)(2:=N°) —, \y.M°(z:=N°) =
Ay (A M)N)° = (Ay.(Ax.M)N))®;

— ((Az. My M3)N)® = (M1 M3)°{(z:=N°) = (MY M3){x:=N°) —,
My (x:=N°YM3 {(x:=N°) = (Az.M1)N)°((Ax.M2)N)® =
((Ax.M71)N((Ax.M2)N))®, which again holds as before by the step
being inner spine, guaranteeing (M;Ms)® = MY M.

e If the inner spine step is M P — NP due to M — N, then by the induction
hypothesis M*® —3 N*® by a spine step, or M*®* = N® and M°® —, N°, and
we distinguish cases on whether M P is a redex or not.

If M P is a redex, then for some M’, M = Ax.M’ so M*® = Ax.M’®, hence
by the shape of the rules for some N, N = Az.N’ so N®* = A\z.N’*. Hence
if M* —3 N*® by a spine step, then M’® —3 N’® by a spine step. Since
M P is itself a redex, a spine redex in M must occur on the left spine of M,
and by closure of both this property and — g under substitution (M P)® =
M'®[x:=P*] -5 N'*[z:=P*] = (NP)*. If M* = N® and M° —, N°,
then M'* = N'® so (MP)®* = M'*[x:=P°®] = N'*[z:=P*] = (NP)*, and
M’ —, N'® so (MP)° = M'°(x:=P°) —, N'®(x:=P°) = (NP)°.

If MP is not a redex, then MP®* = M*P*® and MP® = M°P°, and we
distinguish further cases on whether VP is a redex or not.

If NP is a redex, then for some N', N = A\y.N’, hence by the shape of
the rules the step M — N must be an instance of either the first or the
third rule. In case it is an instance of the first rule, then M = (Az.z)N
and M*P®* = ((Ax.z)N)*P® = z[z:=N°]*P* = N*P* = (\y.N')*P* =
(Ay.N'*)P* —5 N'*[y:=P°] = ((A\y.N')P)* = (NP)*. In case it is an
instance of the third rule, then for some M’ N" M = (Azy.M')N", N' =

(Az.M')N", and (M P)* = M*P* = ((\zy.M')N")*P* = (Ay.M')*[z:=N"*|P* =

(Ay.M"*)[z:=N"*]P* = (A\y.M'"*[z:=N"*])P* —g M'*[x:=N"°*|[y:=P°] =
(Ax.M"\N")*[y:=P°*] = (A\y.(Aa.M")N")P* = (A\y.N')P)* = (NP)*. In
both cases we conclude, since head-redexes are spine redexes.

In case NP is not a redex, (NP)* = N°*P® and (NP)® = N°P°. If
M® —3 N* is a spine step, then (M P)®* = M*P* —g N*P* = (NP)%isa
spine step as well. If M®* = N*® and M°® —, N°, then (MP)®* = M*P°® =
N®P* =(NP)®* and (MP)° = M°P°® —, N°P°® = (NP)°.

e If the inner spine step is PM — PN due to M — N, then by the induction
hypothesis M*® —g N*® by a spine step, or M*® = N® and M°® —, N°. By
the assumption that steps are inner spine, PM itself is not a redex, hence
neither is PN. Hence in the former case (PM)® = P*M* —g P°N® =
(PN)® is a spine step, and in the latter (PM)® = P*M® = P*N°® =
(PN)® and (PM)°® = P°M° —, P°N°® = (PN)°.

o If the step is Ax.M — Az.N due to M — N, M*® —z N*® by a spine step,
or M* = N*® and M°® —, N°. In the former case (Ax.M)® = Az.M* —g
Az.N® = (Az.M)® is a spine step, and in the latter (Az.M)® = \x.M*® =
Az.N® = (Azx.M)® and (A\x.M)® = Ae.M® —, Ax.N°® = (Ax.M)°. O
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