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Abstract

We positively answer Question A.1.6 of Klop’s Ustica notes [3, p.81]:

Is there a recursive normalizing one-step reduction strategy for

micro λ-calculus?

where micro λ-calculus refers to an implementation of the λ-calculus due
to Révész [4], implementing β-reduction by means of ‘micro steps’ recur-
sively distributing a β-redex (λx.M)N over its body M .

1 Answer

Definition 1. Distributive reduction1 → on λ-terms is generated by:

(λx.x)N → N

(λx.y)N → y for x 6= y

(λxy.M)N → λy.(λx.M)N for x 6= y and y 6∈ N
(λx.M1M2)N → (λx.M1)N((λx.M2)N)

Remark that a term is a distributive redex if and only if it is β-redex, hence
distributive and β-normal forms coincide.

Normalisation of our strategy answering the question in the abstract, relies
on the one hand on normalisation of spine reductions for the ordinary λ-calculus,
and on the other hand on termination of pure distribution steps, as encountered
in the λ-calculus with explicit substitutions λx.

Definition 2. An inner spine strategy always contracts an innermost redex
among the spine redexes [1, Definition 4.7(i)].

By the above remark, the spine redexes w.r.t. distributive reduction coincide
with those for ordinary β-reduction.

If M distributively rewrites to M ′, then in general M need not β-rewrite to
M ′, but M and M ′ are β-convertible:

1Distributive reduction is our attempt to provide ‘micro λ-calculus’ with a more systematic
name.
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• (λx.x)N →β x[x:=N ] = N ;

• (λx.y)N →β y[x:=N ] = y;

• (λxy.M)N →β (λy.M)[x:=N ] = λy.M [x:=N ]←β λy.(λx.M)N ;

• (λx.M1M2)N →β (M1M2)[x:=N ] = M1[x:=N ]M2[x:=N ]←β

(λx.M1)N((λx.M2)N).

Our strategy relies on the observation that distributive reduction is preserved
when projecting every term M to its full-β-development M•, as long as the
steps of the former are not β-destructive. Here the full-β-development M• of
a term M is the term obtained by β-contracting all redexes of M , and a step
is called destructive, if the redex contracted is of shape (λx.(λy.M1)M2)N , i.e.
in case of distribution of N over an application (λy.M1)M2) which itself is a
redex. Non-destructive steps will be mapped to β-reduction sequences by •.

Instead of proving this general fact, we note inner spine steps are non-
destructive by innerness, and show that each such inner spine step is mapped
to at most a single β-reduction step by •. Moreover, in case a distributive in-
ner spine step is mapped to the empty step by •, i.e. if it is erased, then that
step did not create a redex, hence it was a purely distributive step. This can
be expressed formally by mapping the step to an x-step in Bloo and Rose’s
λ-calculus with explicit substitutions λx [2], via an explicification map �. Here,
the explicification M� of a term M is obtained by replacing each redex (λy.P )Q
by the redex P 〈y:=Q〉 in the λ-calculus with explicit substitutions λx.

Lemma 3. If M → N is an inner spine step, then M• →β N
• by a spine step,

or M• = N• and M� →x N
�.

Proof. See Appendix A.

Theorem 4. Inner spine strategies are normalising.

Proof. By the lemma, an infinite distributive reduction from some term M
having a normal form M̂ , would give rise to an infinite spine β-reduction from
M•, unless from some moment N on in the distributive reduction all further
terms are mapped to N•. But then by the lemma again, the infinite distributive
reduction from N would give rise to an infinite x-reduction from N�.

Infinite spine β-reductions are impossible from M• since M and M• are
β-convertible, hence have the same β-normal form M̂ , and spine strategies are
needed strategies, hence normalising [1].

Infinite →x-reductions are impossible since →x reduction (the substitution
rules) is known to be terminating for the λx-calculus [2].

The strategy can be made effective by first searching for the leftmost path
containing a redex, and then taking the innermost redex on that path.

The essence of our strategy is to avoid destruction of redexes. In particu-
lar, the inner spine strategy avoids (by innerness) that distribution of the outer
redex in Q = (λx.(λy.M)N)P destroys the inner one, thereby blocking Klop’s
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counterexample to preservation of strong normalisation for distributive reduc-
tion. In a way, this demonstrates that Klop’s spiralling reduction from Q is the
only extra ‘cause’ for non-termination in the implementation of β-reduction by
means of distributive reduction. We expect it to be be easy to adapt our proof
to other strategies breaking the spiral.
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A Proof of Lemma 3

We provide a detailed proof of Lemma 3, stating that if M → N is an inner
spine step, then M• →β N• by a spine step, or M• = N• and M� →x N

�.

Proof. By induction on the generation of steps.

• If the step is due to an instance ` → r of one of the distributive rule
schemata, then `• = r•:

– ((λx.x)N)• = x[x:=N•] = N•;

– ((λx.y)N)• = y[x:=N•] = y = y•;

– ((λxy.M)N)• = (λy.M•)[x:=N•] =
λy.M•[x:=N•] = λy.((λx.M)N)• = (λy.(λx.M)N))•;

– ((λx.M1M2)N)• = (M1M2)•[x:=N•] = (M•1M
•
2 )[x:=N•] =

M•1 [x:=N•]M•2 [x:=N•] = ((λx.M1)N)•((λx.M2)N)• =
((λx.M1)N((λx.M2)N))•, which holds by the step being inner spine,
guaranteeing that the application M1M2 is not a redex, hence that
(M1M2)• = M•1M

•
2 .

We show `� →x r
� holds in each case:

– ((λx.x)N)� = x〈x:=N�〉 →x N
�;

– ((λx.y)N)� = y〈x:=N�〉 →x y = y�;
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– ((λxy.M)N)� = (λy.M�)〈x:=N�〉 →x λy.M
�〈x:=N�〉 =

λy.((λx.M)N)� = (λy.(λx.M)N))�;
– ((λx.M1M2)N)� = (M1M2)�〈x:=N�〉 = (M�1M

�
2 )〈x:=N�〉 →x

M�1 〈x:=N�〉M�2 〈x:=N�〉 = ((λx.M1)N)�((λx.M2)N)� =
((λx.M1)N((λx.M2)N))�, which again holds as before by the step
being inner spine, guaranteeing (M1M2)� = M�1M

�
2 .

• If the inner spine step is MP → NP due to M → N , then by the induction
hypothesis M• →β N

• by a spine step, or M• = N• and M� →x N
�, and

we distinguish cases on whether MP is a redex or not.

If MP is a redex, then for some M ′, M = λx.M ′ so M• = λx.M ′•, hence
by the shape of the rules for some N ′, N = λx.N ′ so N• = λx.N ′•. Hence
if M• →β N

• by a spine step, then M ′• →β N
′• by a spine step. Since

MP is itself a redex, a spine redex in M must occur on the left spine of M ,
and by closure of both this property and→β under substitution (MP )• =
M ′•[x:=P •] →=

β N ′•[x:=P •] = (NP )•. If M• = N• and M� →x N
�,

then M ′• = N ′• so (MP )• = M ′•[x:=P •] = N ′•[x:=P •] = (NP )•, and
M ′� →x N

′� so (MP )� = M ′�〈x:=P �〉 →x N
′�〈x:=P �〉 = (NP )�.

If MP is not a redex, then MP • = M•P • and MP � = M�P �, and we
distinguish further cases on whether NP is a redex or not.

If NP is a redex, then for some N ′, N = λy.N ′, hence by the shape of
the rules the step M → N must be an instance of either the first or the
third rule. In case it is an instance of the first rule, then M = (λx.x)N
and M•P • = ((λx.x)N)•P • = x[x:=N•]•P • = N•P • = (λy.N ′)•P • =
(λy.N ′•)P • →β N ′•[y:=P •] = ((λy.N ′)P )• = (NP )•. In case it is an
instance of the third rule, then for some M ′,N ′′, M = (λxy.M ′)N ′′, N ′ =
(λx.M ′)N ′′, and (MP )• = M•P • = ((λxy.M ′)N ′′)•P • = (λy.M ′)•[x:=N ′′•]P • =
(λy.M ′•)[x:=N ′′•]P • = (λy.M ′•[x:=N ′′•])P • →β M

′•[x:=N ′′•][y:=P •] =
((λx.M ′)N ′′)•[y:=P •] = (λy.(λx.M ′)N ′′)P • = ((λy.N ′)P )• = (NP )•. In
both cases we conclude, since head-redexes are spine redexes.

In case NP is not a redex, (NP )• = N•P • and (NP )� = N�P �. If
M• →β N

• is a spine step, then (MP )• = M•P • →β N
•P • = (NP )• is a

spine step as well. If M• = N• and M� →x N
�, then (MP )• = M•P • =

N•P • = (NP )• and (MP )� = M�P � →x N
�P � = (NP )�.

• If the inner spine step is PM → PN due to M → N , then by the induction
hypothesis M• →β N

• by a spine step, or M• = N• and M� →x N
�. By

the assumption that steps are inner spine, PM itself is not a redex, hence
neither is PN . Hence in the former case (PM)• = P •M• →β P

•N• =
(PN)• is a spine step, and in the latter (PM)• = P •M• = P •N• =
(PN)• and (PM)� = P �M� →x P

�N� = (PN)�.

• If the step is λx.M → λx.N due to M → N , M• →β N
• by a spine step,

or M• = N• and M� →x N
�. In the former case (λx.M)• = λx.M• →β

λx.N• = (λx.M)• is a spine step, and in the latter (λx.M)• = λx.M• =
λx.N• = (λx.M)• and (λx.M)� = λx.M� →x λx.N

� = (λx.M)�.
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