Journal of Functional Programming

CAMBRIDGE

The Heap Lambda Machine

Journal: | Journal of Functional Programming

Manuscript ID: | JFP-2008-0006

Manuscript Type: | Regular Paper

Date Submitted by the

Author 08-Mar-2008

Complete List of Authors: | Salikhmetov, Anton; RTSoft

Keywords
Lambda calculus and related systems, Automata (e.g., finite, push-
down, resource-bounded)

& scholarone"

Manuscript Central

Editorial office contact: JFP-ed@cambridge.org

Page 1 of 14 Journal of Functional Programming

ZU064-05-FPR heap 9 March 2008 2:27

Under consideration for publication in J. Functional Programming 1

The Heap Lambda Machine

ANTON SALIKHMETOV
RTSoft, P. O. Box 158, 105077 Moscow, Russia

(e-mail: salikhmetov@gmail.com)

Abstract

This paper introduces a new machine architecture for evaluating lampdzssions using the normal-
order reduction, which guarantees that every lambda expressionengivdduated if the expression
has its normal form and the system has enough memory. The archétectnsidered here operates
using heap memory only. Lambda expressions are representeapdns gand all algorithms used in
the processing unit of this machine are non-recursive.

1 Introduction

Automated evaluation of lambda expressions has drawntigiteaf many researchers.
A number of different approaches to design machines thattlr deal with lambda ex-
pressions has been proposed in the literature, and the magto@Kluge, 2005) gives a
comprehensive overview of many such designs.

We have noticed that all such machines relied upon quite Goated memory structure
and required rather intricate memory management techsigypically, the memory is
subdivided into several functionally different areas. Amgosuch areas can be stacks,
environments, code areas, heaps, and so on. Such arrartgemply the need to specify
a separate interface to each memory subsystem: a staclepmgister to keep track of
stack utilization, a dynamic memory allocator for heapshgge collectors, etc. Besides,
conventional computer memory provides just a linear arfégemtical memory cells, each
cell being addressable by its index in this array. For suchmarg, it remains unclear as
to which criteria should be employed for partitioning theagrinto functionally different
parts.

These observations motivated us to investigate whether [itossible to construct a
machine possessing the following two properties. Firgtpiemory should be uniform, i.e.
no subdivision of the former into functionally differentnasuch as a stack and a dynamic
memory area was allowed. Second, we wanted the memory nraeagjenechanisms to
be super-simple, with their algorithmic implementatiow éime interface being as minimal
as possible.

It appears that it is indeed possible to satisfy the requergsimentioned above. Having
started from the idea of graph reduction, we designed théimaevhere the entire memory
is a uniform collection of sequentially addressable blogkscated on demand. We have
also implemented a portable software emulator of this nmechi

Editorial office contact: JFP-ed@cambridge.org

ZU064-05-FPR

Journal of Functional Programming

heap 9 March 2008 2:27

2 A. Salikhmetov

The memory manager in our machine consists of a single ezgisd three commands
only. Taking into account the similarity of our memory aklwer and heap-based dynamic
memory allocators, we have decided to refer this machine theaHeap Lambda Machine.
Worth mentioning here is also the fact that careful desighefrocessing unit algorithms
allowed us to avoid using garbage collection.

The purpose of this paper is to describe the architectureiofmachine and to demon-
strate all vital parts of the emulator.

2 High-Level Design and the User’s View of the System

The system consists of several units shown in Fig. 1, the maits being the memory
and the processor. The units can interact by transferringr@ioand data as indicated in
the block diagram by the arrows. In some cases, units use contlata of the special
state type explained in Section 5. Concrete structure of the wefgends on a particular
implementation of the machine: in the abstract machinesetla@e simply algorithms de-
scribed in later sections of this paper; in our software etaulthe units are C language
functions; had this machine been implemented in hardwaeh anit would have been a
microprogram using a set of internal registers and comnadinig with its neighbors by
asserting electrical signals.

The memory in our machine is externally visible, i.e. therusa read and write to it.
The entity to govern the memory usage is the memory managesisting of the Allocator

Cleaner

|

Evaluator

Walker I Allocator

Replacer

|

Copier

plel el e

Processor

|

Memory

Fig. 1. The architecture of the Heap Lambda Machine. In the block diagfalenotes the
freehead register, E stands for thexpr register, and the state registers are shown with the S letter.

Editorial office contact: JFP-ed@cambridge.org

Page 2 of 14

Page 3 of 14

Journal of Functional Programming

ZU064-05-FPR heap 9 March 2008 2:27

The Heap Lambda Machine 3

and thefreehead register. The Allocator exports the interfaces to inidgalthe memory
as well as to allocate and free its units. In the software atoglthe machine memory
is modeled via an array obtained using the Standard C Lilftargtion calloc; in the
abstract machine, the memory is an array of identical sdligraddressable blocks. The
user has to prepare the lambda expression using the infernadt explained in Section 3,
allocate a sufficient amount of machine memory, load theesgion into memory, load
the memory address where the expression starts intexteregister, and transfer control
to the Evaluator.

The Evaluator is the entry point to the machine. When evaluati over, the user can
read the result from the machine memory starting from theesddnexpr and optionally
convert it into a suitable format. In our software emulatbg Evaluator is implemented
as a C function, so that when this function returns, this méarhe caller that evaluation
is complete. As for the abstract machine, we do not speciypanticular mechanisms to
signal the end of the computation; if this machine were inmaeted in hardware, such
mechanisms would be defined at the hardware design stage.

The Walker, Cleaner, Replacer, and Copier units are helpek®in the processor, and
these units are not intended to be visible to the user. Thesigd and implementation are
described later on.

3 TheMemory Model

In our machine, lambda expressions are represented assgrdipis idea has become
standard after (Wadsworth, 1971). The machine memory songgthe lambda expression
under evaluation has linear structure and consists of blogich block representing a
single node of the lambda expression graph.

A node in the memory is a record of four address cells. Thedirstcallecbar points to
the parent node. The second one is callegy and is used during copying of subexpres-
sions as well as in order to link free blocks (see Section dvbelThe two remaining cells
calledfunc andarg hold the addresses of the subexpressions, if any. Additjoraeir
contents define the type of the node.

In the usual manner, we have three types of lambda expressibes: an application,
an abstraction, and a variable. In the case of an applicattienfunc cell points to the
operator subexpression, while thieg cell points to the operand subexpression—tfaitic
and arg cells are non-zero. For abstractions, thewc cell points to the function body
subexpression, angrg contains the null pointer. Finally, for variables, thenc cell is
zero,arg points to an abstraction node which it is linked with.

For example, theapply combinatorAx.Ay.(xy) will be represented in the machine
memory as shown in Fig. 2.

The well-known issue with name clashes (Barendregt, 198d}He variable names
is avoided in our machine automatically thanks to the faat tifferent variables are
represented as pointers to different nodes. Effectivalyneric block addresses in our
memory model play the role of variable names.

The free variable nodes are represented with null pointetise address cells, i.e. both
func andarg are zero. We think that it is convenient to treat the free mgrbéocks as

Editorial office contact: JFP-ed@cambridge.org

ZU064-05-FPR

Journal of Functional Programming

heap 9 March 2008 2:27

4 A. Salikhmetov

Address Cell Expression
par copy func arg

1 0 O 2 0 AXAy.(xy)
2 1 0 3 0 Ay.(xy)
3 2 0 4 5 (xy)

4 3 0 0 1 X

5 3 0 0 2 y

Fig. 2. The memory dump for thegpply combinator.

nodes that represent fictional free variables: indeed, bloztks formally have the type of
a free variable node.

4 Storage Management

Before the lambda expression can be processed, the macaimemnshould be initialized
as described below. Initially, every memory block is pubittie linked list of free blocks
similar to that discussed in Section 16.2 of (Field and Karj 1988). Traversing from the
last block till the first one, the machine links them into theef nodes list using theopy
cell as the pointer to the next node. The register callegthead is to hold the head node
of this list and points to address 1 at the beginning of théesydifecycle. The initial state
of the machine memory is illustrated in Fig. 3. Our softwaraiator implements memory
initialization via thereset command shown in Appendix C.

The machine allocates and frees nodes by manipulating rikedilist of free blocks
and changing the contents of tlieeehead register accordingly via the following two
commandsget andput.

Address Cell Expression
par copy func arg

N-2 ON-1 0 O X
N-1 0 N 0 O X
N 0 O 0 O X

Fig. 3. The initial state of the machine memory of Sktdlocks, each block representing a fictional
free variable.

Editorial office contact: JFP-ed@cambridge.org

Page 4 of 14

Page 5 of 14

Journal of Functional Programming

ZU064-05-FPR heap 9 March 2008 2:27

The Heap Lambda Machine 5

If the freehead register contains a non-zero value, gee command saves the node the
freehead register points to and updates this register by the valukérdpy cell of the
saved node. Theget zeroes out each cell in the saved node and returns it to tles.dal
the case when thereehead register contains the zero value, which means that therayste
is out of free memory, callinget triggers a machine exception and evalution is aborted.

In turn, theput command takes one operand—the address of the block to be gut ba
into the free blocks list. This command sets twpy cell of its operand to the value kept
in the freehead register, then changes the latter to the address receivbe aperand.

For more details of the system initialization and storag@agement, please see Ap-
pendix C.

5 Walking Through the Expression Tree

Most of central mechanisms in the machine rely upon thetghii traverse the tree in
normal order, which in our case means that the function gam @pplication is processed
first. The algorithm of tree traversing is factored out inteeparate unit, the fundamen-
tal idea behind this unit being that of a state. The stateistsf the following three
components: the current node address, the address of tir& pade of the subexpression
being traversed, and the direction (forth, i.e. towardscthitd node, or back, i.e. towards
the parent). Based upon this state, a command cakéd decides which path should
be followed at a particular step, makes this step and rethensype of the step chosen:
a variable—direction is set to backward, a function part—theent node is changed
to the function part, an argument part—direction is set tovéwd and the current node
is changed to the argument part, going back—the current modkanged to the parent
node, or finish—the state is not changed, butithek command indicates that walking is
complete. Note that this mechanism is a modification of thatpo reversing approach
explained in Section 11.3.2 of (Field and Harrison, 1988)teNalso that our walking
algorithm is non-recursive, hence using stacks is avoided.

Before walking through the expression tree, it is necestaiyitialize the state using
a special command calleichit. The initial state has the direction forth, the current node
address pointing to the subexpression node, and the pasdetaddress pointing to the
parent of the subexpression. Appendix B presents the ingiéation of this unit.

Fig. 4 shows an example of traversing through the expredsien Here the node sub-
scripts indicate the step numbers at which this particubaieris traversed.

As.(sS)As.(s9)0,17,18

As(ss)18 As.(s9)g 16

(s8)2,7 (sS)10.15

RN

S3.4 S56 S11,12 $1314

Fig. 4. Traversal order for the tree representing@®heombinator.

Editorial office contact: JFP-ed@cambridge.org

ZU064-05-FPR

Journal of Functional Programming

heap 9 March 2008 2:27

6 A. Salikhmetov

6 Clearing Subexpressions

Clearing of subexpressions is needed after the replaceshbotind variables with respec-
tive subexpressions to put now useless blocks back to thdfoeks list.

Tree walking is the basic mechanism subexpression cle#&ibgsed upon. It can be
easily seen that given the tree traversal strategy desceabeve, freeing the child nodes
every time when the walker has just gone up will necessagiyilt in freeing the whole
tree. For instance, for the expression tree shown in Figepss/, 8, 15, 16, and 17 are the
places where the child nodes are freed.

For more details about implementation of #ieear command described in this Section,
please see Appendix C.

7 Copying Subexpressions

While replacing the bound variables with respective subesgions, i.e. with the argument
part of an application whose function part is an abstractibea machine is copying the
argument subexpression using the command cabeg. This command uses the walking
mechanism as well as tlhd ear command described in Section 6.

In contrast toclear, copy considers every value thealk command returns in order
to appropriately construct a copy and move through the ngression being constructed.
Construction itself is made on the steps of the followingetypan argument part, a func-
tion part, and an argument. When going back, the pointer tatineent node of a new
expression under construction is changed to its parenh Bfihe steps listed above was
described in Section 5.

The most complicated problem within tkepy command is that variables in the new
subexpression should point to the corresponding abgirectindeed, if the abstraction
nodes are just constructed, the command should map thespoirthe variable nodes from
the one in the original subexpression to those in the copthdmmachine, this problem is
solved as described below.

While walking through the original subexpression under @ogytwo cases ofralk
steps are processed in a special manner: a function part\arihale.

In the first case, the parent of the current node in the origmdexpression is changed:
its copy cell is set to the address of the corresponding node in thesobaxpression. Such
way, the mapping of old abstractions to the new ones is cactsil.

In the case of a variable, thepy command searches for the abstraction the original vari-

able node points to by going back through the whole exprasithen the corresponding
abstraction node is found and iispy cell contains a non-zero valueepy Sets thearg
cell value to the value in theopy cell of the found node.

The implementation of theopy command described above can be found in Appendix D.

8 Replacing Bound Variables

Evaluation of lambda expressions requires replacemenbohd variables in function
bodies with the copies of arguments. To make such a copy tlvhineuses theopy
command described in Section 7. As to searching for bouridhlas in a function body, a

Editorial office contact: JFP-ed@cambridge.org

Page 6 of 14

Page 7 of 14

Journal of Functional Programming

ZU064-05-FPR heap 9 March 2008 2:27

The Heap Lambda Machine 7

special command calletkplace, which walks the subexpression tree and locates bound
variables, is introduced.
The replace command takes three operands, each operand representoigter o
a subexpression node. The first operand means the subempredtere the command
should look for the bound variable which corresponds to tistraction pointed to by the
second one. The third one contains the subexpression wiopsestiould be substituted
for the bound variable just found. After substitution hassfiled,replace puts the bound
variable node back to the free blocks list using phe command discussed in Section 4.
For more details of replacement algorithm implementaid@ase see Appendix E.

9 TheEvaluation Algorithm

In order to evaluate lambda expression in the memory, thehimaavalks through the
expression tree and looks for nodes that can be reduced. etheibility check for a
node is performed by a separate command callettducible, which returns a boolean
value at a subexpression node. Tihreducible command examines whether the node
represents an application. If this is the case, it chechkeeiftinction part of the application
is an abstraction. In the case when both conditions ardisdtithe command returns true,
otherwise it returns false. Implementation of this commeaud be found in Appendix E.

When a reducible node is found, this hode (which is the curoeet from the view-
point of the walker) is an application having an abstraciiorits operator part. Using
thereplace command (Section 8), the machine makes one step of betatimdu&/hen
this step is complete, the application node, as well as thattion node, ceases to exist
as part of the expression. Recall thatplace makes copies of the argument for each
entry of the bound variable—that is, the entire applicatiperand subexpression is not
needed anymore. Hence the memory allocated for the agplicdhe abstraction and the
operand can and should be freed. This is the place wherelther command described
in Section 6 is used: note that in order to clear all thesdiestproperly it suffices to zero
out thefunc cell of the abstraction node and start clearing from the ndieh represents
the application.

When the current node represents an operator part of an apgtic the algorithm
changes the current node to the parent because the lattdranmayv the leftmost outermost
redex—such behavior is the consequence of the fact that tiehineamakes use of the
normal-order reduction.

For more details about implementation of teemal command described above, please
see Appendix F.

10 Conclusions

This paper presented a detailed description of the macliinautomated evaluation of
lambda calculus expressions. Major features of this maciniclude using graphs to rep-
resent lambda expressions, a memory manager of ultimafisity and normal order
evaluation. The uniform structure of the machine memory #redidea of “the entire
memory is heap” is what distinguishes our approach from ties@reviously found in
the literature.

Editorial office contact: JFP-ed@cambridge.org

Journal of Functional Programming Page 8 of 14

ZU064-05-FPR heap 9 March 2008 2:27

8 A. Salikhmetov

All algorithms of the processing unit were exposed in gresaifl and the concept of
the machine has been proven by implementing a portable aaftemulator; for the latter,
this paper includes the source code of all core parts of ihénform of a C library. In
the simplest case, this library will be linked to an applii@at which provides a human
interface to the machine. Please note that full sourceseofrtachine emulator including
an implementation of the human interface are available ds-&¢eessible accompanying
material for this paper.

Our further research will concentrate on the following tspiFirst, we will attempt
to implement lazy evaluation (Wadsworth, 1971). Second,wileexplore the design
of a more sophisticated 1/0 model rather than using the emtiemory for information
exchange between the machine and its outside world. Of epalisabove extensions of
the Heap Lambda Machine are to be done without sacrificingithplicity of its memory
management.

A ThelLibrary Interface

The following is the header fileachine . h that describes the library interface and contains
declarations of all needed data types, functions, and ghdoéables. Interesting to the
library user are thaambda data type, which represents a pointer to a node in the lambda
expression graph, thget function, which should be called to allocate memory for agyod
and thenormal routine, which needs to be called to start the lambda exjoressaluation.

In this implementation, the location of the root node in thebda expression graph will

be used as the argument to #wermal routine.

1 #ifndef _MACHINE_H

2 #define _MACHINE_H

3

4 typedef struct _lambda {
5 struct _lambda *par, *copy, *func, *arg;
6 } *lambda;

7

8 typedef enum {

9 END, UP, FUNC, ARG, VAR
10 } path;

11

12 typedef enum {

13 UNRED, RED

14 } redex;

15

16 typedef enum {

17 FORTH, BACK

18 } dir;

19

20 typedef struct {

21 dir wh;

Editorial office contact: JFP-ed@cambridge.org

Page 9 of 14

ZU064-05-FPR

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

Journal of Functional Programming

heap 9 March 2008 2:27

The Heap Lambda Machine 9

lambda par, expr;
} state;

extern lambda memory, freehead;

void clear(lambda expr);

lambda copy(lambda expr);

lambda get();

state init(lambda expr);

redex isreducible(const lambda expr);

void normal (lambda *expr);

void put(lambda node);

void replace(lambda *expr, const lambda func, const lambda arg);
void reset(int size);

path walk(state *st);

#endif

B The Walker Unit

The walker unit contains two commandsait, which initializes the state, anch1k, which
steps through the tree counterclockwise, i.e. the funéti@pplications is processed prior
to the argument.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

#include "machine.h"
state init(lambda expr)
{

state st = {FORTH, expr->par, expr};

return st;

path walk(state *st)
{

lambda expr = st->expr;

if (BACK == st->wh) {
lambda par = expr->par;

if (st->par == par)
return END;

if ((par->func == expr) && par->arg) {
st->expr = par->arg;

Editorial office contact: JFP-ed@cambridge.org

Journal of Functional Programming Page 10 of 14

ZU064-05-FPR heap 9 March 2008 2:27

10 A. Salikhmetov

22 st->wh = FORTH;
23 return ARG;

24 }

25

26 st->expr = par;

27 return UP;

28 }

29

30 if (expr->func) {

31 st->expr = expr->func;
32 return FUNC;

33 }

34

35 st->wh = BACK;

36 return VAR;

37}

C The Storage M anager

The storage manager unit consists of phe, get, andclear commands implementation
as well as theeset routine, which resets the memory into its initial state.

1 #include "machine.h"

2

3 #include <stdlib.h>

4 #include <string.h>

5

6 lambda memory, freehead;

7

8 lambda get()

9 {

10 lambda new = freehead;
11

12 if (!freehead)

13 abort();

14

15 freehead = freehead->copy;
16

17 return memset(new, 0, sizeof(struct _lambda));
8 2

19

20 void put(lambda node)

21 A

22 node->copy = freehead;
23 freehead = node;

Editorial office contact: JFP-ed@cambridge.org

Page 11 of 14

ZU064-05-FPR

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
a7
48
49
50
51
52
53
54
55
56
57
58
59
60
61

Journal of Functional Programming

heap 9 March 2008 2:27

The Heap Lambda Machine 11
}
void clear(lambda expr)
{
state st = init(expr);
path wh;
while ((wh = walk(&st))) {
lambda tmp = st.expr;
if (UP == wh) {
if (tmp->func)
put (tmp->func) ;
if (tmp->arg)
put (tmp->arg) ;
}
}
put (expr) ;
}
void reset(int size)
{
if (memory) {
free (memory) ;
memory = freehead = NULL;
return;
}
if (size > 0) {
memory = calloc(size, sizeof(struct _lambda));
freehead = memory;
while (--size)
memory[size - 1].copy = &memory[size];
}
}

D The Copy Routine

The following is thecopy command implementation.

#include "machine.h"

Editorial office contact: JFP-ed@cambridge.org

Journal of Functional Programming Page 12 of 14

ZU064-05-FPR heap 9 March 2008 2:27

12 A. Salikhmetov
3 #include <stdlib.h>
4
5 lambda copy(lambda expr)
6 {
7 lambda new = get();
8 state st = init(expr);
9 path wh;
10
11 while ((wh = walk(&st))) {
12 lambda expr = st.expr;
13
14 if (UP == wh)
15 new = new->par;
16 else if (ARG == wh) {
17 new = new->par;
18 new->arg = get();
19 new->arg->par = new;
20 new = new->arg;
21 } else if (FUNC == wh) {
22 expr->par->copy = new;
23 new->func = get();
24 new->func->par = new;
25 new = new->func;
26 } else if (VAR == wh) {
27 lambda arg = expr->arg, tmp;
28
29 new->arg = arg;
30 for (tmp = expr; tmp; tmp = tmp->par) {
31 if ((tmp == arg) && tmp->copy) {
32 new->arg = tmp->copy;
33 break;
34 }
35 }
36 }
37 }
38
39 return new;
40 }

E The Replacement M echanism

The replacement mechanism is implemented here, and so isukiae that checks if a
node can be reduced.

1 #include "machine.h"

Editorial office contact: JFP-ed@cambridge.org

Page 13 of 14

ZU064-05-FPR

© 0 NO Ul WN

A DWW WWWWWWWWNDNDNNDNDNNMNDNNNDNNRPRRPRERREPRRERERPREPR
P O © 0 ~NO 0O~ WNMNPEPOOOOLONOOOORMWNMPEOOOOWNOOOGDMWDNERE,O

Journal of Functional Programming

9 March 2008 2:27

The Heap Lambda Machine 13

#include <stdlib.h>

redex isreducible(const lambda expr)

{

lambda func = expr->func;

if (expr->arg && func && func->func && !func->arg)
return RED;

return UNRED;

void replace(lambda *expr, const lambda func, const lambda arg)

{

state st = init(*expr);
path wh;

while ((wh = walk(&st))) {
lambda tmp = st.expr;

if ((VAR == wh) && (func == tmp->arg)) {
lambda par = tmp->par;

st.expr = copy(arg);
st.expr->par = par;

if (par) {
if (par->func == tmp)
par->func = st.expr;

else
par->arg = st.expr;

put (tmp) ;

*expr = st.expr;

F TheEvaluator Algorithm

Given below is the core algorithm of the Heap Lambda Machiinés algorithm evaluates
the lambda expression residing in the machine memaory.

Editorial office contact: JFP-ed@cambridge.org

Journal of Functional Programming Page 14 of 14

ZU064-05-FPR heap 9 March 2008 2:27

14 A. Salikhmetov
1 #include "machine.h"
2
3 #include <stdlib.h>
4
5 void normal (lambda *expr)
6 {
7 state st = init(*expr);
8
9 do {
10 while (isreducible(st.expr)) {
11 lambda func, arg, par, tmp;
12
13 tmp = st.expr;
14 func = tmp->func;
15 arg = tmp->arg;
16 par = tmp->par;
17
18 replace (&tmp->func->func, func, arg);
19
20 st.expr = tmp->func->func;
21 st.expr->par = par;
22
23 if (st.par == par)
24 *expr = st.expr;
25 else if (par->func == tmp) {
26 par->func = st.expr;
27 st.expr = par;
28 } else
29 par->arg = st.expr;
30
31 tmp->func->func = NULL;
32 clear (tmp) ;
33 }
34 } while (walk(&st));
35 }

References

Barendregt, H. P. (1984he Lambda Calculus, Its Syntax and Semantics. North-Holland.
Field A. J. and Harrison P. G. (198Bunctional Programming. Reading MA: Addison-Wesley.
Kluge, W. (2005)Abstract Computing Machines. Springer-Verlag.

Wadsworth, C.P. (1971) Semantics and Pragmatics of the Lambdal@l&hD thesis. Oxford
University.

Editorial office contact: JFP-ed@cambridge.org

